位置:成果数据库 > 期刊 > 期刊详情页
一种处理多类分类问题的强化支持向量机方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京建筑工程学院理学院,北京100044
  • 相关基金:国家自然科学基金 (the National Natural Science Foundation of China under Grant No.60573158) .
作者: 徐志洁[1]
中文摘要:

提出了一种强化支持向量机方法,将支持向量机与强化学习结合,逐步对未知类别标记样本进行访问,根据对该样本分类结果正确与否的评价标记访问点的类别,并对当前的分类器进行更新,给出了更新分类器的规则。对模拟数据和真实数据分别进行了实验,表明该方法在保证分类精度的同时,大大降低了对已知类别标记的训练样本的数量要求,是处理已知类别标记样本获取困难的多类分类问题的一种有效的方法。

英文摘要:

In the present study a reinforcement support vector machine is developed for muhiclass classification.Support vector machine and reinforcement learning are combined.Support vector machine classifier is trained on labeled data set.The unlabeled instance is queried according to querying strategy, and according to the critic of right or wrong about the classification result of the queried instances,the classifier is updated.The method is evaluated on a synthetic data set,as well as on real data sets,and it is shown to be valuable for the problem of multiclass classification in which the labeled instances are difficult to obtain.

同期刊论文项目
期刊论文 28 会议论文 9
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887