针对传统的TFIDF模型计算根集(root set)文档特征权重的不适应性,提出了计算文档特征权重的新方法--TFIDF-2模型.另外,给出3种启发式规则用于获取根集文档的质心向量.通过计算文档与质心之间的相似度进行文本分类只是质心的一个初步应用.在这个过程中,提出了一种计算文档与质心之间相似度的新方法.通过一系列的对比实验,分析验证了此种分类方法比传统的分类算法更准确、更高效.最后,验证了将本体与质心相结合提取未标识数据集中相关文档的有效性.