位置:成果数据库 > 期刊 > 期刊详情页
多维概念格与多维序列模式的增量挖掘
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学计算机科学与技术学院,长春130012
  • 相关基金:国家自然科学基金项目(60373099)
中文摘要:

多维序列模式挖掘旨在将一个或多个背景维度信息中发现的关联模式与有序事务序列中发现的序列模式有机结合,从而为用户提供信息内容更加丰富、更具有直接应用价值的多维序列模式.目前虽有一些挖掘多维序列模式的工作,但其关联模式与序列模式的发现过程是基于不同的数据结构分开进行的.提出一种新的概念格结构——多维概念格,它是对概念格的延伸与泛化,其内涵更加丰富,不仅具有多个有序的任务内涵,而且具有多个无序的背景内涵.设计实现了基于该结构的增量式多维序列模式挖掘算法,该算法使用统一的数据模型实现关联模式与序列模式的高效同步挖掘.在合成数据集上的实验结果验证了算法的有效性.同时,算法在实际的银行数据集上的应用效果也说明了算法的实用性.

英文摘要:

Multi-dimensional sequential pattern mining is the process of mining association rules from one or more dimensions of background information in which the order of the dimension values is not relevant, alongside mining sequential patterns from one or more dimensions of information in which the order is important. Multi-dimensional sequential patterns are much more informative frequent patterns which are suitable for immediate use. Although some work has been conducted for mining multi-dimensional sequential patterns, association patterns and sequential patterns are mined separately based on different data structures. In this paper, a novel data model called multi-dimensional concept lattice is proposed, which is the extension or generalization toward concept lattice. The intension of multi-dimensional concept lattice is more informative, which is constituted of one or more ordered task-relevant dimensions and one or more unordered background dimensions. Moreover, an incremental multi-dimensional sequential pattern mining algorithm is developed. The proposed algorithm integrates sequential pattern mining and association pattern mining with a uniform data structure and makes the mining process more efficient. The performance study on synthetic datasets shows the scalability and effectiveness of the proposed algorithm. At the same time, the application on the real-life financial datasets demonstrates the practicability of the approach.

同期刊论文项目
期刊论文 39 会议论文 21
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349