位置:成果数据库 > 期刊 > 期刊详情页
使用本体语义提高文本聚类
  • ISSN号:1003-7985
  • 期刊名称:《东南大学学报:英文版》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学计算机科学与技术学院,长春130012, [2]东北师范大学计算机学院,长春130024
  • 相关基金:The National Natural Science Foundation of China (No. 60373099), the Natural Science Foundation for Young Scholars of Northeast Normal University ( No. 20061005).
中文摘要:

为了提高聚类结果和允许在结果中进行选择,将本体语义与文档聚类相结合,在文档处理过程中提出了基于WordNet的新的文档聚类算法.首先通过tf-idf对文档进行了表示,为了将WordNet的概念出现在文档集合中,通过新的实体对每一个单词向量进行扩展.其次,运用特征提取算法对文档进行特征提取.最后提出了本体集合聚类算法用以提高文本的聚类效果.实验构建在Reuters20新闻组的数据基础上,应用互信息作为试验结果的比较.结果表明:与已经存在的一些算法如MNB.CLU—TO,co—clustering等相比,基于本体的聚类算法在文本聚类上有很明显的提高.

英文摘要:

In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing is proposed. First, every word vector by new entities is extended after the documents are represented by tf-idf. Then the feature extracting algorithm is applied for the documents. Finally, the algorithm of ontology aggregation clustering (OAC) is proposed to improve the result of document clustering. Experiments are based on the data set of Reuters 20 News Group, and experimental results are compared with the results obtained by mutual information(MI). The conclusion draws that the proposed algorithm of document clustering based on ontology is better than the other existed clustering algorithms such as MNB, CLUTO, co-clustering, etc.

同期刊论文项目
期刊论文 39 会议论文 21
同项目期刊论文
期刊信息
  • 《东南大学学报:英文版》
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京市四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323 83794343传
  • 国际标准刊号:ISSN:1003-7985
  • 国内统一刊号:ISSN:32-1325/N
  • 邮发代号:
  • 获奖情况:
  • 2010年和2012年荣获第三届和第四届中国高校优秀科...
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库
  • 被引量:493