位置:成果数据库 > 期刊 > 期刊详情页
基于粒子群优化算法的网页分类技术
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]吉林大学计算机科学与技术学院,长春,130012 教育部符号计算与知识工程重点实验室,长春,130012    
  • 相关基金:国家自然科学基金项目(60373099);教育部"符号计算与知识工程"重点实验室资助项目(93K-17)
中文摘要:

粒子群优化算法由于其高效、容易理解、易于实现,在很多领域得到了应用.网页分类是网络信息检索研究的关键技术之一,在对网页的表示时,将Web页面分解为不同的部分,之后迭代使用SVM算法构造分类器.由于PSO算法是一种基于迭代的优化工具,对训练过程中迭代产生的网页分类器进行优化组合,产生最终分类器,同时也增强了分类器的自适应性.实验结果表明,通过对迭代产生的分类器进行优化组合,以及对网页结构的划分,寻找并利用网页集中蕴藏的规律综合计算特征权值,大大提高了网页分类的正确率和F-measure值,所以这种方法是有效的、稳健的和实用的.

同期刊论文项目
期刊论文 39 会议论文 21
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349