我们由在 comultiplication 地图上强加 Hom-coassociative 法律直到一些同晶型并且要求这些同晶型满足 copentagon 公理并且获得 Hom-coassociative 2-coalgebra 把一条 monoidal 范畴途径给 Hom-coassociative coalgebra,它是一个 2- 范畴。第二,我们以他们模块的范畴描绘 Hom-bialgebras。最后,我们用 Hom-coassociative 2-coalgebra 给 Hom-quasi-Hopf 代数学的一条范畴的认识。
We give a monoidal category approach to Hom-coassociative coalgebra by imposing the Hom-coassociative law up to some isomorphisms on the comultiplication map and requiring that these isomorphisms satisfy the copentagon axiom and obtain a Hom-coassociative 2-coalgebra, which is a 2- category. Second, we characterize Hom-bialgebras in terms of their categories of modules. Finally, we give a categorical realization of Hom-quasi-Hopf algebras using Hom-coassociative 2-coalgebra.