通过给出李超三系上带有权λ的(θ,φ)-导子和带有权λ的Jordan(θ,φ)-导子的定义,得到了李超三系上带有权λ的Jordan(θ,φ)-导子是带有权λ的(θ,φ)-导子的充分条件,证明了李超三系上带有权λ的Jordanθ-导子即为带有权λ的θ-导子,并对李超三系上的(θ,φ)-导子进行了推广.
By gaving the definition of(θ,φ)-derivations of weightλand Jordan(θ,φ)-derivations of weight λ on a Lie supertriple system, we obtained the sufficient conditions for Jordan(θ,φ)-derivations of weightλto be(θ,φ)-derivations of weightλon a Lie supertriple system.We proved that Jordanθ-derivations of weightλ wereθ-derivations of weightλ on a Lie supertriple system,and extended(θ,φ)-derivations on a Lie supertriple system.