位置:成果数据库 > 期刊 > 期刊详情页
一种抗加性高斯白噪声的盲图像源分离方法
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京师范大学信息科学与技术学院,北京100875, [2]曲阜师范大学物理工程学院,山东曲阜273165
  • 相关基金:国家自然科学基金项目(60602035); 北京市自然科学基金项目(4102029); 山东省优秀中青年科学家科研奖励基金项目(BS2010DX012); 曲阜师范大学基金项目(XJ201010)
中文摘要:

针对基于聚类稀疏成分分析的盲图像源分离方法噪声敏感的问题,提出了一种抗加性高斯白噪声的盲图像源分离算法.通过分析混合图像与噪声图像间的相关性,估计混合图像中的噪声并去除,对去噪后的混合图像进行稀疏成分分析,即分离出源图像.实验结果表明,该算法能直接、有效地去除同分布的加性噪声,使叠加噪声的混合图像得到精确的分离.

英文摘要:

Aiming at the noise sensitivity of blind source separation for mixed images based on the cluste- ring sparse component analysis, a blind source separtation method for mixed images with additive white Gaussian noise is proposed. The noise intensity in mixed image is evaluated by correlation coefficients be- tween mixed image and noise image, then via sparse component analysis, the original images are separa- ted from denoising mixed images. Experiment shows that the presented algorithm can remove the noise ef- fectively, and extract the original images accurately from overlying noise mixed images.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684