位置:成果数据库 > 期刊 > 期刊详情页
基于整数递推GCV的遥感图像去噪算法
  • 期刊名称:光子学报(EI收录)
  • 时间:0
  • 页码:3301-3306
  • 语言:中文
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京师范大学信息科学与技术学院,北京100875
  • 相关基金:国家自然科学基金(60602035)和国家高技术研究发展计划(2007AA122156)资助
  • 相关项目:基于不同兴趣度的任意形状多感兴趣区图像编码方法研究
中文摘要:

本文提出了一种整数递推GCV(Integer Recurrent Generalized Cross Validation, IR-GCV)算法,能高效获取去噪阈值。在对遥感图像做小波变换后,统计子带中小波系数的幅值分布,进行同值小波系数合并运算,然后通过整数优化递推加速GCV计算过程,减少相邻阈值下GCV函数的冗余计算。在对多幅遥感图像仿真实验中,当噪声标准差为10至30时,IR-GCV算法耗时仅为GCV算法的2%至0.5%,且保证了去噪效果一致,能有效提高图像PSNR0.66db至6.03db。此外,GCV算法耗时随噪声增大及遥感图像尺寸增长而迅速升高,IR-GCV算法耗时则相对平稳。

英文摘要:

A computationally efficient IR-GCV (integer recurrent generalized cross validation) algorithm is proposed. Firstly the integer grey-scale pixels are transformed into integer wavelet coefficient. Then its distribution is calculated, followed by the incorporative numeration of coefficient of the same value. Furthermore the integer recurrent procedure based on integer wavelet coefficient is applied, which take full advantage of the relevance between GCV functions under adjacent thresholds. The comparison among GCV and IR-GCV is carried out on multiple remote sensing images. When the noise standard deviation varies from 10 to 30, the time complexity of IR-GCV is only 2 percent to 0.5 percent of that of GCV, while the de-noising results still remain unchanged. The PSNR of de-noising image is 0.66db to 6.03db higher than that of noisy image. Besides, the time complexity of GCV increases rapidly as the noise standard deviation and scale of remote sensing image increase, while the time complexity of IR-GCV is relatively more stable.

同期刊论文项目
同项目期刊论文