证明了套代数上的每个非线性的三元Lie导子,是一个可加导子与一个到其中心上的映射的和,而该映射将三元积映成0。
Let A be a associative algebra and define Lie product [a,b] =ab-ba for a,b ∈ A. A nonlinear map Ф: A→A is called a nonliner Lie triple derivation, if it satisfys Ф([[a,b],c])=[[Ф(a),b],c]+[[a,Ф (b)],c]+[[a,b],Ф(c)]. Let H be a Hilbert space, and N be a nest on H, with N≠{{0},H}. Let Ф.T (N)→T(N) be a nonlinear Lie triple derivation on T(N), then Ф(x)=d(x)+τ(x)I for x∈ T(N), where d is an additive derivation of T(N) and τ T(N)→F vanishing at Lie triple products [[a,b],c].