设X和Y分别是实向量空间和实Banach空间,映射,f: X^2→Y,称为二元混合五次函数是指任给x1,x2,y1,y2∈x都满足方程f(x1 +x E, 2yl + Y2 ) +f(xl + X2 ,2y1 -Y2 ) + f(x1 -X2, 2Yl +Y2) +f(x1-x2, 2y1 -y2) =4f(x1 ,y1 +y2) +4f(x2, y1 +y2) +4f(x1 ,y1 -y2) +4f(x2, y1 -y2) + 24f(x1, y1 ) +24f(x2, Yl ) for all x1 , x2, Yl, Y2 。给出了二元混合五次方程的一般解,并证明了它的Hyers—Ulam.Rassias稳定性。
Let X be a vector space and Y be a Banach space over the real field, R. A mapping f: X2→Y from X2 into Y is called a mixed quintic functional equation of two variables if it satisfies that f(x1 +x E, 2yl + Y2 ) +f(xl + X2 ,2y1 -Y2 ) + f(x1 -X2, 2Yl +Y2) +f(x1-x2, 2y1 -y2) =4f(x1 ,y1 +y2) +4f(x2, y1 +y2) +4f(x1 ,y1 -y2) +4f(x2, y1 -y2) + 24f(x1, y1 ) +24f(x2, Yl ) for all x1 , x2, Yl, Y2 ∈X. The general solution of the mixed quintic functional equation of two variables is obtained and the Hyers-Ulam-Rassias stability for it is proved.