位置:成果数据库 > 期刊 > 期刊详情页
Displacement of polymer solution on residual oil trapped in dead ends
  • ISSN号:0459-1879
  • 期刊名称:《力学学报》
  • 时间:0
  • 分类:TE327[石油与天然气工程—油气田开发工程]
  • 作者机构:[1]Key Laboratory of Petroleum Engineering of Ministry of Education,China University of Petroleum, [2]Enhanced Oil Recovery Research Center,China University of Petroleum
  • 相关基金:Project(50574060) supported by the National Natural Science Foundation of China;Project(2005CB221300) supported by the National Basic Research Program of China
中文摘要:

For waterflooding reservoir,oil trapped in pore’s dead ends is hardly flushed out,and usually becomes one typical type of residual oil.The microscopic displacement characteristics of polymer solution with varied viscoelastic property were studied by numerical and experimental method.According to main pore structure characteristics and rheological property of polymer solution through porous media,displacement models for residual oil trapped in dead ends were proposed,and upper-convected Maxwell rheological model was used as polymer solution’s constitutive equation.The flow and stress field was given and displacement characteristic was quantified by introducing a parameter of micro swept coefficient.The calculated and experimental results show that micro swept coefficient rises with the increase of viscoelasticity;for greater viscoelasticity of polymer solution,vortices in the dead end have greater swept volume and displacing force on oil,and consequently entraining the swept oil in time.In addition,micro swept coefficient in dead end is function of the inclination angle(θ) between pore and dead end.The smaller of θ and 180-θ,the flow field of viscoelastic fluid is developed in dead ends more deeply,resulting in more contact with oil and larger swept coefficient.

英文摘要:

For waterflooding reservoir, oil trapped in pore’s dead ends is hardly flushed out, and usually becomes one typical type of residual oil. The microscopic displacement characteristics of polymer solution with varied viscoelastic property were studied by numerical and experimental method. According to main pore structure characteristics and rheological property of polymer solution through porous media, displacement models for residual oil trapped in dead ends were proposed, and upper-convected Maxwell rheological model was used as polymer solution’s constitutive equation. The flow and stress field was given and displacement characteristic was quantified by introducing a parameter of micro swept coefficient. The calculated and experimental results show that micro swept coefficient rises with the increase of viscoelasticity; for greater viscoelasticity of polymer solution, vortices in the dead end have greater swept volume and displacing force on oil, and consequently entraining the swept oil in time. In addition, micro swept coefficient in dead end is function of the inclination angle (θ) between pore and dead end. The smaller of θ and 180-θ, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil and larger swept coefficient.

同期刊论文项目
期刊论文 26 会议论文 3
同项目期刊论文
期刊信息
  • 《力学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:魏悦广
  • 地址:北京市海淀区北四环西路15号中科院力学所内《力学学报》
  • 邮编:100190
  • 邮箱:lxxb@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0459-1879
  • 国内统一刊号:ISSN:11-2062/O3
  • 邮发代号:2-814
  • 获奖情况:
  • 1992年首届自然科技期刊一等奖,1996年国家自然科技期刊二等奖,2000年首届国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:13332