给出标准限制加性许瓦兹预条件的变形,并应用当前流行的Newton-Krylov-Schwarz方法,结合该预条件子,求解由二维三温能量方程离散得到的非线性代数方程组,减少收敛所需要的迭代次数和所需的CPU时间.数值实验表明,该方法比标准限制加性许瓦兹预条件方法收敛所需要的迭代次数和CPU时间要少.
We present a variant restricted Additive Schwarz preconditioner and apply Partial-Newton-Krylov-Schwarz algorithm to solve nonlinear algebraic equations of two-dimensional three-temperature systems. Iteration and CPU time for convergence are decreased. Numerical results show efficiency of the method.