位置:成果数据库 > 期刊 > 期刊详情页
基于Fisher判别分析算法的县域耕地地力等级预测——以河南省辉县市为例
  • ISSN号:0517-6611
  • 期刊名称:《安徽农业科学》
  • 时间:0
  • 分类:S158[农业科学—土壤学;农业科学—农业基础科学]
  • 作者机构:[1]郑州大学水利与环境学院,河南郑州450001, [2]河南省土壤肥料站,河南郑州450002
  • 相关基金:国家自然科学基金项目(40971128).
中文摘要:

[目的]借用机器学习算法——判别分析算法来简化耕地地力评价工作,探索区域尺度上机器学习方法在地力评价应用的新途径。[方法]基于辉县市测土配方施肥财政补贴项目耕地地力评价工作获取的基础数据,依据我国农业部标准《耕地地力调查与质量评价技术规程》(NY/T1634—2008)和该市耕地地力评价实践经验,选取研究区表层土壤质地、土壤剖面特征、地表砾石度、速效钾、有效磷、有机质含量、灌溉保证率、排涝能力、地貌类型、坡度等10个土壤和立地条件因素作为耕地地力水平的判别变量,构建Fisher典则判别函数模型,对5922个评价单元的耕地地力状况进行判断分析和归类分级。[结果]经对判别结果进行统计验证和回代验证,显示预测判别正确率高达91.4%。[结论]在耕地地力评价与分级标准确定的前提下,判别分析算法在区域尺度上对分析耕地地力状况、预测耕地地力等级方面具有独特优势。

英文摘要:

[ Objective ] To simplify the evaluation of cultivated land fertility by applying the machine learning algorithm, which aims to explore a new approach to the application of machine learning method in the evaluation work of cultivated land fertility at regional scale. [ Method ] Based on Technical Specification for Investigation and Quality Evaluation of Cultivated Land Fertility (NY/T 1634--2008 ) and the local prac- tices of cultivated land evaluation, the methods applied by this study generally are supposed to use the based data obtained by the financial subsidy project for soil testing and formulated fertilization conducted in Huixian City, Henan Province, to establish canonical discriminate func- tions. I0 soil and site condition factors including surface soil texture, soil profile characteristics, surface gravel degree, rapidly available potassium in soil, available phosphorous in soil, organic matter content in soil, irrigation guarantee rate, capacity for drainage, geomorphic types, and surface slope are selected as the discriminant variables of cultivated land fertility level. By constructing the model of Fisher discriminant functions, Fisher discriminant analysis (FDA) was employed to determine, analyzed and classified land fertility in 5 922 sampled sites of the studied region using that Fisher discriminate functions. [ Result] The results of the methods demonstrate a prediction accuracy reaching up 91.4% after mathematical statistics verification and back substitution verification which means the original data being returned back to the Fisher discriminant functions. [ Conclusion] Under the premise of identifying the standard of evaluation and classification of cultivated land, the discriminant analysis algorithm has a unique advantage in analyzing and classifying the fertility situation of cultivated land and predicting the grade of cultivated land.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《安徽农业科学》
  • 北大核心期刊(2008版)
  • 主管单位:安徽省农业科学院
  • 主办单位:安徽省农业科学院
  • 主编:曹淑华
  • 地址:合肥市庐阳区农科南路40号
  • 邮编:230031
  • 邮箱:ahnykx@163.com
  • 电话:0551-65148869 65160973
  • 国际标准刊号:ISSN:0517-6611
  • 国内统一刊号:ISSN:34-1076/S
  • 邮发代号:26-20
  • 获奖情况:
  • 1995年获安徽省优秀期刊三等奖,1998年获安徽省优秀期刊三等奖,2002年获第三届全国优秀农业期刊奖,2005年获第四届全国优秀农业期刊一等奖,2005年获安徽省优秀科技期刊一等奖,2006年获第五届全国农业期刊金犁奖学术类一等奖,第四届华东地区优秀期刊,2009年安徽省优秀期刊,RCCSE中国权威学术期刊(A+),中国农业核心期刊(2010)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),日本日本科学技术振兴机构数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版)
  • 被引量:163721