设G是有限群,H为G的子群.如果存在一个主群列1=G0△G1△……Gn-1△Gn=G1使得对每个i=1,2,…,n,或者H覆盖Gi/Gi-1,或者H避开Gi/Gi-1,则称H为G的半覆盖避开子群.利用G的Sylow子群的极大子群,Sylow子群的2-极大子群的半覆盖-避开性得到了群的可解性,P-幂零性的判别,同时得到了群系的一些结论.
Let G be a finite group. A subgroup H of G is said to be a semi CAP- subgroup of G if there exists a given chief series 1 = G0△G1△……Gn-1△Gn=G such that for every i = 1, 2,..., n, either H covers Gi/Gi-1 or H avoids Gi/Gi-1. In this paper, using the condition that some maximal subgroups or 2-maximal subgroups are semi CAP-subgroups of G, we get some criterions for solvability, and p-nilpotency of G. Meanwhile, we obtain some results about formation.