运用有限单群分类定理,证明了有限群G同构于Witt指数n(其中除n为4,6,8,10,12,14,16外)的有限正交单群PΩ2n^+(q),当且仅当(1)πe(G)=πe(PΩ2n^+(q)),πe(G)表示G中元素的阶的集合,(2)ord(Snor(G))=ord(Snor(PΩ2n^+(q))),ord(Snor(G))为G的Sylow子群的正规化子的阶之集合。在某种意义推进了施武杰教授的一个著名猜想。
In this paper the authors have proved the following theorem. Let G be a finite group and S be one of finite orthogonal simple groups PΩ2n^+(q),where n≠4,6,8,10,12,14,16 . Then G≌S if and only if (i) πe(G) =πe(PΩ2n^+(q)) ,where πe(G) is the set of orders of elements in G; (ii) ord(Snor(G)) = ord(Snor(PΩ2n^+(q))) ,where ord(Snor(G) ) is the set of orders of normalizers of its Sylow subgroups in G.