从人类学习和认知角度,借鉴人工智能领域基于案例推理学习的成果,提出一种基于案例类比推理的道路网智能选取新方法。该方法将制图专家对某区域道路网的交互选取结果作为参考标准,对其进行结构化描述并构建和转化为案例库;计算机采用一定的简化算法和泛化算法对该案例库进行分析和学习,获取检索效率更高和适应样本能力更强的案例模型库;计算机在对相似道路网自动选取时,根据获取的案例模型库,采用基于案例类比推理的方法,分析获取相应的解决方案,进而完成道路网智能选取。与已有研究成果相比,本方法以案例及其泛化模型来模拟专家思维,以计算机对案例模型的类比学习来进行相似道路网自动选取,增强了道路网选取中的智能性。最后对本方法的科学性和适用性进行验证,并对试验结果作分析和评价,同时指出了存在的问题和进一步的研究方向。