该文结合非平稳性度量,研究利用经验模态分解算法进行趋势噪声分解,提出基于非平稳性度量的准则来判定舍弃的本性模态函数的数目.通过数值模拟证明了该准则克服了连续均方误差准则的缺陷,在不同噪声强度和复杂趋势下,都能够达到很好的去噪效果.
In this paper, we study the decomposition of trend and noise based on empirical mode decomposition algorithm and non-stationarity measure, and propose a criterion to choose intrinsic mode function for trend. Numerical simulation results show that the proposed criterion can overcome drawback of continuous mean square error criterion, achieve a good effect in different noise intensity and complex trend.