本文研究了一类中心循环的有限p-群G的自同构群.利用在G的导群上作用平凡的自同构以及环上的辛群和正交群,确定了G的自同构群的结构,这推广了Bornand的相应结果.
In this article,the automorphism group of a class of a finite p-group G with a cyclic center is researched.With the automorphisms which act trivially on the derived subgroup of G,symplectic group and orthogonal group over a ring,the structure of the automorphism group of G is determined,which generalizes the related results of Bornand.