确定了超特殊Z-群的自同构群.设G是超特殊Z-群,即 G={(1 α1 α2 … αn αn+1| αj∈Z,j=1,2,…,2n+1}, (0 1 2 … 0 αn+2 … … … … … … 0 0 0 … 0 α2n 0 0 0 … 0 α2n+1 0 0 0 … 0 1 AutcG是Aut G中平凡作用在ζG上的自同构形成的正规子群,则Aut G=AutcG〉xZ2,且1→Z…Z→AutcG→Sp(2n,Z)→1是正合列.
The automorphism group of an extraspecial Z-group is determined. Let G be an extraspecial Z-group, where G={(1 α1 α2 … αn αn+1| αj∈Z,j=1,2,…,2n+1}, (0 1 2 … 0 αn+2 … … … … … … 0 0 0 … 0 α2n 0 0 0 … 0 α2n+1 0 0 0 … 0 1 let Auto G be the normal subgroup of AutG consisting of all elements of Aut G which act trivially on ζG. Then Aut G = Auto G x Z2, and there is an exact sequence 1→Z…Z→AutcG→Sp(2n,Z)→1.