设幂零群G=KP=PK,其中P是有限秩的幂零π-群,K是G的有限秩的π′-自由的正规子群.π不属于K的谱Sp(K),设1=ζ0G【ζ1G【…【ζcG=G是G的上中心列,α和β是G的两个自同构,把α和β在每个商因子ζiG/ζ(i—1)G上的诱导自同构分别记为αi和βi,记Ii:=Im(αiβi—βiαi),则(i)当每个Ii都是有限循环群,并且I:=〈(αβ(g))(βα(g))(-1)|g∈G〉是G的有限子群时,α和β生成一个可解的几乎Abel群.(ii)当每个Ii或者是有限循环群,或者是秩1的可除群,或者是C⊕D,其中C是循环群,D是秩1的可除群,或者是无挠的局部循环群,或者Ii有正规子群列1【Ji【Ii,其商因子分别为有限循环群,无挠的局部循环群,或者Ii=D⊕Ji,其中D是秩1的可除群,Ji为无挠的局部循环群,或者Ii有正规列1【Ki【Ji【Ii,其商因子分别为有限循环群,秩1的可除群,无挠的局部循环群时,β和β生成一个可解的NAF-群.特别地,如果α和β是A的两个π′-自同构,那么(iii)当每个Ii都是有限循环群,并且I:=〈(αβ(g))(βα(g))(-1)|g∈G〉是有限群时,α和β生成的群是有限幂零π-群被有限Abelπ′-群的扩张.(iv)当每个Ii或者是有限循环群,或者是秩1的可除群,或者是C⊕D,其中C是循环群,D是秩1的可除群时,α和β生成一个可解的剩余有限π∪π′-群,它是有限生成的无挠幂零群被有限可解π∪π′-群的扩张.(v)当每个Ii或者是有限循环群,或者是秩1的可除群,或者是C⊕D,其中C是循环群,D是秩1的可除群,或者是无挠的局部循环群,或者Ii有正规子群列1【Ji【Ii,其商因子分别为有限循环群,无挠的局部循环群,或者Ii=D⊕Ji,其中D是秩1的可除群,Ji为无挠的局部循环群,或者Ii有正规列1【Ki【Ji【Ii,其商因子分别为有限循环群,秩1的可除群,无挠的局部循环群时,α和β生成一个可解的剩余有限π∪π′-群,它的幂零长度至多是4.当K是FC-群时,在情形(v)中,α和β生成的群是有限生成的