位置:成果数据库 > 期刊 > 期刊详情页
有限秩的幂零群的自同构
  • ISSN号:0583-1431
  • 期刊名称:《数学学报》
  • 时间:0
  • 分类:O152.1[理学—数学;理学—基础数学]
  • 作者机构:[1]湖北大学数学系, [2]北京大学数学科学学院, [3]河北工程大学理学院
  • 相关基金:国家自然科学基金资助项目(11371124);湖北省高层次人才[程基金资助项目(070-016533)
中文摘要:

设幂零群G=KP=PK,其中P是有限秩的幂零π-群,K是G的有限秩的π′-自由的正规子群.π不属于K的谱Sp(K),设1=ζ0G【ζ1G【…【ζcG=G是G的上中心列,α和β是G的两个自同构,把α和β在每个商因子ζiG/ζ(i—1)G上的诱导自同构分别记为αi和βi,记Ii:=Im(αiβi—βiαi),则(i)当每个Ii都是有限循环群,并且I:=〈(αβ(g))(βα(g))(-1)|g∈G〉是G的有限子群时,α和β生成一个可解的几乎Abel群.(ii)当每个Ii或者是有限循环群,或者是秩1的可除群,或者是C⊕D,其中C是循环群,D是秩1的可除群,或者是无挠的局部循环群,或者Ii有正规子群列1【Ji【Ii,其商因子分别为有限循环群,无挠的局部循环群,或者Ii=D⊕Ji,其中D是秩1的可除群,Ji为无挠的局部循环群,或者Ii有正规列1【Ki【Ji【Ii,其商因子分别为有限循环群,秩1的可除群,无挠的局部循环群时,β和β生成一个可解的NAF-群.特别地,如果α和β是A的两个π′-自同构,那么(iii)当每个Ii都是有限循环群,并且I:=〈(αβ(g))(βα(g))(-1)|g∈G〉是有限群时,α和β生成的群是有限幂零π-群被有限Abelπ′-群的扩张.(iv)当每个Ii或者是有限循环群,或者是秩1的可除群,或者是C⊕D,其中C是循环群,D是秩1的可除群时,α和β生成一个可解的剩余有限π∪π′-群,它是有限生成的无挠幂零群被有限可解π∪π′-群的扩张.(v)当每个Ii或者是有限循环群,或者是秩1的可除群,或者是C⊕D,其中C是循环群,D是秩1的可除群,或者是无挠的局部循环群,或者Ii有正规子群列1【Ji【Ii,其商因子分别为有限循环群,无挠的局部循环群,或者Ii=D⊕Ji,其中D是秩1的可除群,Ji为无挠的局部循环群,或者Ii有正规列1【Ki【Ji【Ii,其商因子分别为有限循环群,秩1的可除群,无挠的局部循环群时,α和β生成一个可解的剩余有限π∪π′-群,它的幂零长度至多是4.当K是FC-群时,在情形(v)中,α和β生成的群是有限生成的

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院数学研究院
  • 主编:李炳仁
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100080
  • 邮箱:Actamath@amss.ac.cn
  • 电话:010-62551910
  • 国际标准刊号:ISSN:0583-1431
  • 国内统一刊号:ISSN:11-2038/O1
  • 邮发代号:2-502
  • 获奖情况:
  • 1996年中科院优秀科技期刊二等奖,1997年全国优秀科技期刊二等奖,2000年中科院优秀科技期刊二等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9981