利用两高爆速导爆索对称布置于药卷两侧,起爆后炸药爆轰波在对称线处汇聚碰撞,当碰撞角度达到一定值时,发生马赫反射,使爆轰压力成倍增加,形成高压、高能量密度区域的聚能效应。本文在爆轰波传播碰撞理论的基础上,通过炸药做功能力和猛度试验验证爆轰波碰撞的聚能效果。做功能力试验结果表明爆轰波碰撞能够增加炸药能量利用率;猛度试验结果表明采用对称起爆技术下的爆轰波碰撞能够改变爆轰波在特定方向上的扩散作用。试验结果与爆轰波入射角的几何关系表明,当高爆速起爆药条与主装药爆速比例在1.15倍以上时,爆轰波碰撞能够达到一定的聚能效果。
The Mach reflection occurs when two high-detonation-velocity detonating cords are arranged symmetrically on both sides of the cartridge. After the detonation the explosive's detonation waves converge and collide along the line of symmetry, multiplying the detonation pressure and forming a Munroe effect region with high pressure and high energy density when the collision angle reaches a certain value. In this paper, explosive-determination of power and brisance tests were conducted based on the theory of detonation wave collision and reflection. The results from the test of the explosive- determination of power show that the detonation wave collision can improve the efficiency of the ex- plosive energy utilization, and those from the test of the brisance show that the symmetrical initiation of the detonation can change its distribution in a particular direction. The geometrical relationship of the experimental results with the incidence angle of the detonation wave shows that, when the initia- ting explosive velocity is above 1.15 times that of the main charge, the detonation wave collision will produce a certain degree of Munroe effect.