气相爆轰过程是一个相当复杂的瞬态物理化学变化过程,目前实验条件还无法观测爆轰过程中的具体变化,因而常常需要借助于数值模拟辅助理论和实验研究。本文以气相爆轰合成纳米二氧化锡为例,将Kruis颗粒长大模型应用于预测气相爆轰法制备纳米氧化物颗粒直径的研究中。通过研究压力与温度之间的转化关系,建立爆轰条件下的颗粒长大模型,计算出颗粒直径并与实验结果进行对比,以期可以通过合理的模型对其直径进行预测,并为最终人为控制爆轰法制备纳米氧化物颗粒直径的大小奠定基础。
Gaseous detonation is a fairly complex transient physieochemical change process, so specific changes in detonation process cannot be observed under the present experimental conditions. It is often required the help of numerical simulation on theoretical and experimental research, In this paper, taking gaseous detonation synthesis of nano SnO2 as the example, the Kruis' particles growth model was applied to study particle diameter of nano oxide particle prepared by gaseous detonation. By studying the transformation relation between the pressure and temperature, the particle growth model under detonation conditions was set up, and the calculated particle diameters were compared with the experimental results in order to predict its diameter by a reasonable model and to lay a foundation for artificial control particle diameter of nanometer oxide prepared by gaseous detonation.