对Lipshitz带形区域Ω_a上的Hardy空间Η~p(Ω_a)(0〈p〈+∞),证明了Ηp(Ω_a)的完备性,对解析函数f∈Ηp(Ω_a)(0〈p〈+∞)在边界点的非切向极限f*的存在性和f能由边界函数f*的Cauchy积分表示也给出了证明.
For Hardy space Ηp(Ω_a)(0 〈 p 〈 + ∞) of the Lipshitz strip domain Ω_a,the completeness,the existence of the nontangential limit f*of the function f(z) in Ηp(Ω_a) is proved.And it is shown that the function f(z) inΗp(Ω_a) can be represented by the Cauchy integral of its boundary value f*of class.