对于任意p〉0以及[0,+∞)上的连续函数M(x),本文定义了右半平面上的加指数型权Hardy空间Hp(M),并且对于lim x→+∞M(x)/x为-∞或有限的情况,分析了Hp(M)的结构,此外,对lim x→+∞M(x)/x=+∞的情形,本文用Legendre变换对M作凸化,并分析得出,存在某个凸函数M^**(x),H^p(M)与H^p(M^**(x))等价,进而得到在一定条件下Hp(M)具有零点唯一性的结论.
For p〉0 and continuous function M(x) as defined in[0, +∞), we define Hardy space with exponential weight on the right half plane. In addition, we analyze structure of space H^p (M) at value of lim x→+∞M(x)/x(-∞, finite and +∞ accordingly). For lim x→+∞M(x)/x, we use method of Legendre transform to conclude the existence of a convex function M^** (x), such that H^p (M) is equivalent to H^p (M^** (x)). Under certain conditions, space H^p(M) has zero uniqueness.