本文研究了由Dziok-Srivastava算子H(a1,…,aq;b1,…,bs)定义的关于参数bj∈C/Z0^-(Z0^-=0,-1,-2,…;j=1,2,…,s)的多叶解析函数类Wp(H(bj+1);A,B).利用微分从属的方法和卷积的性质,获得了该类函数的特征性质和包含结果,推广了一些已知结果.
In the present paper,we study the class Wp(H(bj + 1);A,B) of multivalent analytic functions with respect to the parametersbj∈C/Z0^-(Z0^-=0,-1,-2,…;j=1,2,…,s),which is defined by the Dziok-Srivastava operator H(a1,...,aq;b1,...,bS).By using the methods of differential subordination and the properties of convolution,we obtain the characterization properties and inclusion results for this class,which generalize some previous known results.