设G为一个离散群,(G,G+)为一个拟偏序群使得G+^0=G+∩G+^-1为G的非平凡子群.令[G]为G关于C+^0的左倍集全体,|C+|为[G]的正部.记T^G+和T^[G+]为相应的Toeplitz代数.当存在一个从G到G+^0上的形变收缩映照时,我们证明了T^G+酉同构于T^|G+|⊙(G+^+)的一个C^*-子代数.若进一步,G+^0还为G的一个正规子群,则T^G+与T^|G+|⊙GT^*(G+^0)酉同构.
Let (G, G+) be a quasi-partial ordered group such that G+^0=G+∩G+^-1 is a non-trivial subgroup of G. Let [G] be the collection of left cosets and [G+] be its positive. Denote by T^G+ and T^[G+] the associated Toeplitz algebras. We prove that T^G+ is unitarily isomorphic to a C^*-subalgebra of T^|G+|⊙(G+^+) if there exists a deformation retraction from G onto G+^0. Suppose further that G+^0 is normal, then ,T^G+ and ,T^|G+|⊙GT^*(G+^0) are unitarily equivalent.