探讨了C^n中单位球面S上Berezin变换和Toeplitz算子的性质,证明了由{Tφ,φ∈L^∞ (S)}所生成的C^*-代数中算子T的符号恰好为单位球B上函数T(称为T的Berezin变换)的非切向边界值.此外,本文还得到了经典Toeplitz符号演算的有趣推广.
We investigate the properties of Berezin transform and Toeplitz operators on the unit sphere S in C^n. We obtain the symbol of an operator T in the C^n-algebra I(L^∞ (S)) generated by {Tφ,φ∈L^∞ (S)} as the nontangential boundary value of a certain function T (called the Berezin transform of T) on the unit ball B. Furthermore, we construct interesting extensions of the classical Toeplitz symbol calculus for Toeplitz operators to larger operator algebras.