记Aφ^p(D^n)(p〉1)为单位多圆盘D^n上P次可积解析函数全体组成的加权Bergman空间.该文利用多圆盘函数论及Schur估计,研究了加权Bergman空间Aφ^p(D^n)上有界算子S满足一定可积条件时的紧性刻画,证明了S为紧的当且仅当其Berezin变换在多圆盘的边界趋于零.
Let Aφ^p(D^n)(p〉 1) denote the Banach space consisting of all analytic functions in the unit polydisk D^n that are also p--integrable, In this paper, by using polydisk function thoery and Sehur test, we studied eharactarization of compactness of a bounded operator S on the weighted Bergman space Aφ^p( D^n ) if S satisfied some integrable conditions, and proved that S is compact if and only if its Berezin transform vanishes on the boundary of the unit polydisk,