位置:成果数据库 > 期刊 > 期刊详情页
铁矿石烧结性能预报模型
  • 期刊名称:中南大学学报(自然科学版),2005,35(6):949~954
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中南大学,资源加工与生物工程学院,湖南,长沙,410083, [2]涟源钢铁公司,湖南,娄底,417009
  • 相关基金:国家自然科学基金资助项目(50374080)
  • 相关项目:烧结优化配矿综合技术经济系统的研究
中文摘要:

研究了铁矿石烧结性能的评价指标及其主要影响因素, 提出了误差修正的带动量项的线性再励自适应变步长BP神经网络算法, 建立了铁矿石烧结性能预报模型. 模型预报结果表明, 用拓扑结构为12-34-4的BP神经网络训练6 700次后, 神经网络训练误差为0.000 187, 模型预报命中率均达83.5%以上, 模型具有很好的泛化能力和自适应能力.

英文摘要:

The valuing indexes and some main influencing factors in iron ore sintering capabilities were investigated in this paper. Based on the research, a BP neural network learning algorithm with amending error, appending momentum and adaptive variable step size linear reinforcement was presented, and a predictive model of iron ore sintering capabilities was established. By adopting the BP neural network with the 12-34-4 structure and after 6 700 times train, the predictive result of model of iron ore sintering capabilities is satisfying, the neural network training error is 0.000 187, and the predictive hit-ratio of random samples is over 83.5%. It can be concluded that the predictive model is generally applicable and has self-adaptability.

同期刊论文项目
期刊论文 22 会议论文 5 获奖 3
同项目期刊论文