f:V(G)→{-1,0,1}称为图G的负全控制函数,如果对任意点v∈V,均有f[v]≥1,其中f[v]=∑ v∈N(v)f(u).如果对每个点v∈V,不存在负全控制函数g:V(G)→{-1,0,1},g≠f,满足g(v)≤f(v),则称f是一个极小负全控制函数.图的上负全控制数Γt^-(G)=max{w(f)|f是G的极小负全控制函数},其中w(f)=∑ v∈V(G)f(v).本文研究正则图的上负全控制数,证明了,令G是一个n阶r-正则图.若r为奇数,则Γt^-(G)≤r^2+1/r^2+2r-1 n.
A function f:V(G)→{-1,0,1}defined on the vertices of a graph G is a minus total dominating function(MTDF)if the sum of its function values over any open neighborhood is at least one.An MTDF f is minimal if there does not exist an MTDF g:V(G)→{-1,0,1},f≠g,for which g(v)≤f(v)for every v∈V(G).The weight of an MTDF is w(f)=∑ v∈V(G)f(v).Thus,the upper minus total dominationΓt^-(G)is defined as follows:Γt^-(G)=max{w(f)|f is minimal minus total dominating functon of G}.In this paper,we prove thatΓt^-(G)≤r^2+1/r^2+2r-1 n for r-regular graph G,when r is odd.