L (3, 2,1 ) 图 G 标记是从顶点集合 V (G) 的功能到所有 nonnegative 整数的集合以便 |f()-f()|3 如果 dG (,)= 1, |f()-f()|2 如果 dG (,)= 2,并且 |f()-f()|1 如果 dG (,)= 3。L (3, 2,1 ) 把问题标记是发现最小的数字 3 (G) 以便在那里存在 L (3, 2,1 ) 没有比它大的标签把功能标记。这份报纸为由两部组成的图学习这个问题。我们为由两部组成的图和它的子类获得某界限 of3。而且,我们为树 T 提供一个最好的可能的条件以便 3 (T) 达到最小的价值。
An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u)-f(v)|≥1 if dG(u,v) = 3. The L(3, 2,1)-labeling problem is to find the smallest number λ3(G) such that there exists an L(3, 2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T) attains the minimum value.