在这糊古典 Besov 空格 B p, q s 并且 Triebel-Lizorkin 空格 F p, q s 为 s ∈ ℝ 与光滑重量以一个 isotropy 方法被概括。这些概括 Besov 空格和 Triebel-Lizorkin 空格,表示了由并且为 ∈ ℝ k 并且 k ∈ ℕ 分别地,把许多作为有趣的性质,例如嵌入定理(与为所有光滑重量的规模性质) ,为所有参数的上升性质,和为索引 0 【 p 【 ∞ 的两重性。由构造一个例子,有,这被显示出无穷地,许多概括了 Besov 空格并且概括了躺在 B p , q/s 并且∪ t】s B p , q t ,并且在 F p , q s 并且∪ t】s F p , q t ,分别地。
In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Triebel-Lizorkin spaces, denoted by B^α→p.q and F^α→p.q for α^→ E Nk and k ∈N, respectively, keep many interesting properties, such as embedding theorems (with scales property for all smoothness weights), lifting properties for all parameters 5, and duality for index 0 〈 p 〈∞ By constructing an example, it is shown that there are infinitely many generalized Besov spaces and generalized Triebel-Lizorkin spaces lying between B^sp.q and ∪t〉s B^tp.q, and between F^sp.q and ∪t〉s F^tp.q, respectively.