位置:成果数据库 > 期刊 > 期刊详情页
二阶抽象微分方程的多项式有界解的极大子空间
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:O177.5[理学—数学;理学—基础数学]
  • 作者机构:[1]南京审计学院应用数学系,南京210029, [2]南京大学数学系,南京210093
  • 相关基金:国家自然科学基金(10571084),南京审计学院重点课题(N8K2005/A02)
中文摘要:

受文de Laubenfels(1997,Isreal Journal of Mathematics,98:189—207)的启发,引进空间形(A,k)和H(A,ω),它们分别是使得该二阶抽象Cauchy问题有在[0,∞)一致连续且O((1+t)^k)有界和O(e^ωt)有界的弱解的x∈X的全体.讨论Banach空间X上二阶抽象Cauchy问题的具有多项式有界解或指数有界解的极大子空间问题.由Wang and Wang(1996,Functional Analysis in China.Kluwer,333—350)知,该Cauchy问题适定的充要条件是该Cauchy问题中的X上闭算子A生成一个强连续Cosine算子函数.处理该Cauchy问题不适定的情况,证明或指出了如下结论:·W(A,k)和H(A,ω)均为Banach空间,且W(A,k)和H(A,∞)均连续嵌入X; ·部分算子AIW(A,k)生成一个多项式有界的余弦算子函数使‖C(t)‖W(A,k)≤2(1+t)^k;·部分算子AIW(A,ω)生成一个指数有界的余弦算子函数{C(t)}t∈R+,‖C(t)‖H(W,ω)≤2e^ωt;·W(A,k)和H(A,ω)分别是极大的.即若有Banach空间Y连续嵌入X,且使AIY生成一个O((1+t)^k)有界的余弦算子函数,那么Y连续嵌入W(A,k);而若使AIY生成一个O(e^ωt)有界的余弦算子函数,那么Y连续嵌入H(A,ω).

英文摘要:

This paper is devoted to discuss the topic on maximal subspaces for the polynomially or exponentially bounded mild solutions of the following abstract Cauchy problem,{d^2/dt^2u(t,x)=Au(t,x) u(0,x)=x,u′(0,x)=0 (*) where A is a closed operator on a Banach space X. It follows from Wang and Wang ( 1996, Functional Analysis in China. Kluwer, 333 -350) that the Cauchy problem ( * ) is well-posed, if and only if the closed operator occurring in ( * ), A, generates a strongly continuous Cosine operator function, in this paper we treat the case that ( * ) is ill-posed. Motivated by de Laubenfels (1997, Isreal Journal of Mathematics, 98:189 - 207), we introduce two subspaces W(A,k) and H(A, ω), W(A ,k) is the set of all x in X for which the equation ( * ) has a mild solution u(t ,x) such that ( 1 + t)^-k u(t,x) is uniformly continuous and bounded on [0,∞ ). And H(A,ω) is the set of all x in X for which the equation ( * ) has a mild solution u(t,x) such that e^-ωt u(t,x) is uniformly continuous and bounded on [0, ∞ ). We prove or point out the following conclusions. · W(A ,k) and H(A,ω) are Banach spaces, and both are continuously embedded in X; · The part operator A│W(A,k) generates a polynomially bounded Cosine operator function {C(t)}t∈R+ such that ‖C(t)‖W(A,k)≤2(1+t)^k; · The part operator A│W(A,ω) generates an exponcntly bounded Cosine operator function {C(t)}t∈R+ such that ‖C(t)‖H(A,ω)≤2e^ωt;·The subspaces of X, W(A,k) and ll(A,ω) are respectively maximal in the sense that, let Y be another subspace continuously embedded in X, if A I r generates an O ( ( 1 + t) ^k ) bounded Cosine operator function then Y is continuously embedded in W(A ,k), or if Air generates an O(e^ωt) bounded Cosine operator function then Y is continuously embedded in H( A,ω).

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316