位置:成果数据库 > 期刊 > 期刊详情页
Forecasting model of residential load based on general regression neural network and PSO-Bayes least squares support vector machine
  • ISSN号:1002-6487
  • 期刊名称:《统计与决策》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TU43[建筑科学—岩土工程;建筑科学—土工工程]
  • 作者机构:[1]School of Economics and Management, North China Electric Power University, Beijing 102206, China
  • 相关基金:Foundation item: Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of China; Proj ect(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
中文摘要:

第一,一般回归神经网络(GRNN ) 被用于影响预报的居住负担(RL ) 的因素的钥匙的可变选择。第二, GRNN 选择的关键影响因素作为输入和城市、农村的 RL 的输出终端被使用模仿并且学习。另外,最后的模型的合适的参数通过使用证据理论联合与 PSO 方法和 Bayes 理论计算的优化结果被获得。然后, PSO-Bayes 最少的广场支持向量机器(PSO-Bayes-LS-SVM ) 的模型被建立。案例研究然后被为学习并且测试提供。城市、农村的 RL 的均方差预报的实验分析结果表演分别地是 0.02% 和 0.04% 。最后,作为一个例子在中国拿特定的省 RL,从 2011 ~ 2015 的 RL 的预报结果被获得。

英文摘要:

Firstly, general regression neural network (GRNN) was used for variable selection of key influencing factors of residential load (RL) forecasting. Secondly, the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning. In addition, the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory. Then, the model of PSO-Bayes least squares support vector machine (PSO-Bayes-LS-SVM) was established. A case study was then provided for the learning and testing. The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%, respectively. At last, taking a specific province RL in China as an example, the forecast results of RL from 2011 to 2015 were obtained.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《统计与决策》
  • 北大核心期刊(2011版)
  • 主管单位:湖北省统计局
  • 主办单位:湖北省统计局统计科学研究所
  • 主编:李明星
  • 地址:武汉市武昌区松竹路28号万达环球国际中心B座29楼
  • 邮编:430071
  • 邮箱:tjyjc@vip.163.com tjyjc3220@sohu.com
  • 电话:027-87818776 87814524
  • 国际标准刊号:ISSN:1002-6487
  • 国内统一刊号:ISSN:42-1009/C
  • 邮发代号:38-150
  • 获奖情况:
  • 连续四届入选全国中文核心期刊,全国首届优秀经济期刊,中国社科期刊精品数据库来源期刊,中文科技期刊数据库来源期刊
  • 国内外数据库收录:
  • 中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:48658