为了能以较小的代价高效地自动构造量子可逆逻辑电路,提出了一种新颖的四量子可逆逻辑综合方法.该方法首先将一个四量子电路的函数表示成真值表的形式;然后利用传统的递归思想,通过对换演算,将四量子电路映射函数的真值表分解成2块相互独立的三量子电路映射函数的真值表;再查找相应的最优三量子电路,直接生成相关电路;最后将对换运算的电路并入该电路,经过局部优化即可生成最终电路.分析结果表明,用该方法综合四量子电路能大幅减少TOF门的数量,平均需要15.74个TOF门,最多只需24个TOF门.同时该算法避免了穷举法所需的时空复杂度太大的问题,便于经典计算机实现.
In order to construct quantum reversible logic circuits efficiently and automatically with low cost,a novel method for 4-qubit circuits is proposed.It first represents a 4-qubit function by truth table.Using traditional recursive thought,through truth table permutation,a truth table of 4-qubit mapping function can be decomposed into two independent truth tables of 3-qubit mapping function.Then the corresponding optimal 3-qubit circuits are found,and relevant circuit is directly generated.Meanwhile,the circuits generated in permutation are also added into the circuit.After optimization,4-qubit quantum reversible logic circuits are finally synthesized.Experimental results show that the number of gates to construct reversible logic circuits is less than that of other methods.For any 4-qubit binary logic function,the average number of TOF gates is 15.74 and the most number of TOF gates is 24.This method avoids the exponential nature of the memory or run-time complexity,and it is simple to implement in classical computer.