Wireless networking in cyber-physical systems(CPSs) is characteristically different from traditional wireless systems due to the harsh radio frequency environment and applications that impose high real-time and reliability constraints.One of the fundamental considerations for enabling CPS networks is the medium access control protocol. To this end, this paper proposes a novel priority-aware frequency domain polling medium access control(MAC) protocol, which takes advantage of an orthogonal frequency-division multiple access(OFDMA)physical layer to achieve instantaneous priority-aware polling.Based on the polling result, the proposed work then optimizes the resource allocation of the OFDMA network to further improve the data reliability. Due to the non-polynomial-complete nature of the OFDMA resource allocation, we propose two heuristic rules,based on which an efficient solution algorithm to the OFDMA resource allocation problem is designed. Simulation results show that the reliability performance of CPS networks is significantly improved because of this work.
Wireless networking in cyber-physical systems (CPSs) is characteristically different from traditional wireless systems due to the harsh radio frequency environment and applications that impose high real-time and reliability constraints. One of the fundamental considerations for enabling CPS networks is the medium access control protocol. To this end, this paper proposes a novel priority-aware frequency domain polling medium access control (MAC) protocol, which takes advantage of an orthogonal frequency-division multiple access (OFDMA) physical layer to achieve instantaneous priority-aware polling. Based on the polling result, the proposed work then optimizes the resource allocation of the OFDMA network to further improve the data reliability. Due to the non-polynomial-complete nature of the OFDMA resource allocation, we propose two heuristic rules, based on which an efficient solution algorithm to the OFDMA resource allocation problem is designed. Simulation results show that the reliability performance of CPS networks is significantly improved because of this work. ? 2014 Chinese Association of Automation.