位置:成果数据库 > 期刊 > 期刊详情页
基于优选LBP与加权SVM的年龄估计
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
  • 相关基金:国家自然科学基金资助项目(60673190);江苏大学高级专业人才科研启动基金资助项目(05JDG020)
中文摘要:

针对人脸识别中由于年龄变化使识别率急剧下降的问题,提出了一种基于优选局域二值模式与加权支持向量机回归相结合的年龄估计方法。该方法首先对人脸图像进行分块,提取出各分块的LBP直方图;然后采用神经网络贡献分析法计算出各个特征的贡献值,筛选掉贡献较小的特征并对筛选后的特征赋予相应的权值;最后使用加权SVM回归训练得到年龄函数估算出目标图像的年龄。实验结果表明,该方法可以较为准确快速地对人脸图像进行年龄估计。

英文摘要:

In order to solve the problem which the rate about face recognition sharp declined due to the different age, this paper presented a new method of age estimation based on selected LBP and weighted SVM regression. In this method, divided original data into several sub-images from which extracted LBP histograms. Then calculated the contribution values of each feature by contribution analysis algorithm of neural network. After that, abandoned the features which contribute less and gave the Corresponding weights to the remained features. At last, used weighted support vector machine regression to train the vectors and gain the whole age function, so as to estimate the age of target image. Experiment results show that the method can quickly and effectively estimate the age of the human faces.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049