位置:成果数据库 > 期刊 > 期刊详情页
一种结合多特征的前方车辆检测与跟踪方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013, [2]江苏大学汽车与交通工程学院,江苏镇江212013
  • 相关基金:国家自然科学基金No.60673190; 国家科技支撑计划课题No.2007BAK35B02~~
中文摘要:

车辆检测是汽车防碰撞预警的前提,为了提高前方车辆检测的实时性和鲁棒性,提出一种结合多特征的前方车辆检测跟踪方法。该方法不依赖车道检测,利用车底部阴影的梯度特征确定可能存在车辆的区域,使用差分盒子维计算对应区域的分形维数来排除噪声,根据车辆的水平边缘特征信息精确定位,通过卡尔曼滤波器跟踪检测到的目标,利用归一化转动惯量做车辆验证。实验结果表明,该方法能够在多种交通环境中实时有效地检测前方车辆。

英文摘要:

Vehicle detection is the premise of the automotive anti-collision warning.This paper presents a multi-feature-combined approach to improve the robustness of the vehicle detection in real-time.The approach dose not depend on the lane detection for it is based on the grads feature of the shadow which shows the candidate vehicle regions and it eliminates the noises of the corresponding area by the method of differential box counting.Then,the accurate vehicle area can be located by analyzing the information of vehicle’s horizontal edge feature in the candidate vehicle region.Finally,Kalman filters are used to track the candidate vehicle which will be validated by normalized-mutual-information feature.The result of the experiment has shown that the method provides a robust approach,which can effectively detect the front vehicles in complex traffic circumstances in real time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887