位置:成果数据库 > 期刊 > 期刊详情页
基于UWPCA与粗糙集相结合的表情识别
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]徐州工程学院信电工程学院,江苏徐州221008, [2]江苏大学计算机科学与通信工程学院,江苏镇江212013
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60673190);江苏大学高级人才科研启动基金资助项目(No.05JDG020).
中文摘要:

针对现有的WPCA方法强调信息不足和提取特征维数过高问题,提出了一种改进的加权主成分分析和粗糙集相结合的方法。该算法利用加权主成分分析的原理,将特征加权和主成分分析相结合,构造了一个新的双向三中心高斯分布函数作为加权函数对图像各维特征进行加权,从而得到特征向量,再使用改进的粗糙集属性约简算法对得到的特征向量进行筛选,去除冗余信息。实验结果显示,方法是有效的。

英文摘要:

In view of the question that WPCA method emphasizes information insufficiently and the characteristic dimension extracted excessively high,rough set attribute reduction algorithm with updated WPCA applied in expression features selection is advanced.The weighting principal components analysis's principle is used.The characteristic weighted sum principal components analysis is unified.A new bidirectional three center Gaussian distribution function is constructed as the weighting function.The image characteristics of each dimension are weighted in order to get characteristic vector,and then the improved rough set properties reduction algorithm is used to filter the obtained feature vector to remove redundant information.Experimental results show that this method is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887