位置:成果数据库 > 期刊 > 期刊详情页
基于群体智能与K-均值相结合的关键帧提取
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
  • 相关基金:基金项目:江苏省自然科学基金资助项目(BIL2009199);国家自然科学基金资助项目(60673190)
中文摘要:

为了从不同类型的视频中有效地提取关键帧,提出基于群体智能与K-均值相结合的关键帧提取方法。该方法首先提取视频的颜色特征向量,利用基于群体智能的聚类方法自组织地对颜色向量进行聚类,得到初始聚类;然后通过K-均值对初始聚类进行优化并加快算法收敛,得到最终聚类;最后,提取每类中距离聚类中心最近的向量对应帧并将其作为关键帧。实验表明,该算法能有效地提取出代表视频内容的关键帧,对镜头的相似性和连续性反映准确。

英文摘要:

In order to extract key frame efficiently from different type of video, this paper proposed an efficient method for key frame extraction based on swarm intelligence and K-means. Firstly, applied swarm intelligence clustering analysis to the histogram differences of video shot self-organized,and obtained an initial clustering result. Secondly,conducted K-means to optimize the in- itial clustering result and to accelerate the convergence of the algorithm, obtained a final clustering result. Finally, extracted the center frame of each clustering as the key frames. Experiment indicates that the proposed algorithm can extract the representative key frame of the video accurately and efficiently, and can reflect the similarities and continuity of the shot accuratly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049