本文在一定条件讨论了如下一类带扰动项,且被两个Laplacian算子控制的非线性椭圆方程Dirichlet问题无穷多弱解的存在性.(-△u=∣u∣α-1∣υ∣β+1u+f,x∈Ω,-△υ=∣u∣α+1∣υ∣β-1υ+g,x∈Ω,u(x)+ υ(x)=0,x∈(e)Ω,)其中-△u:=div(▽u),(u,υ)∈E:=H10(Ω)× H10(Ω),(f,g)属于E的对偶空间.
In this paper,we study the existence of infinitely many solutions for a class of non-linear elliptic systems governed by two Laplacian operators involving perturbations under some conditions.(-△u=∣u∣α-1∣υ∣β+1u+f,x∈Ω,-△υ=∣u∣α+1∣υ∣β-1υ+g,x∈Ω,u(x)+ υ(x)=0,x∈(e)Ω,)where-△u:=-div(▽u),(u,υ)∈E:=H10(Ω)× H10(Ω),(f,g)∈E^*.