研究BA延拓和调和映照的关系.首先,给出了BA延拓为双曲调和的一个必要条件,特别地,若边界对应h局部是C^2和奇的,则其BA延拓不是双曲调和的.其次,证明了若h是分段C^2的则其BA延拓不是π调和的,除非h(x)=ax+b,x∈R.
This paper studies the connection between BA-extensions and harmonic mappings. Firstly, the necessary condition for a BA-extension to be hyperbolic harmonic is obtained. Particularly, if a boundary correspondence h is locally in C^2 and odd, then the BA-extension of h is not hyperbolic harmonic. Secondly, if h is in C^2 piecewisely, then the BA-extension of h is not π-harmonic unless h(x) = ax + b, x ∈ R.