位置:成果数据库 > 期刊 > 期刊详情页
基于语义与最大匹配度的短文本分类研究
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京信息科技大学网络文化与数字传播北京市重点实验室,北京100101
  • 相关基金:国家自然科学基金项目(61271304);北京市教委科技发展计划重点项目暨北京市自然科学基金B类重点项目(KZ201311232037)
中文摘要:

为了解决基于VSM方法在进行短文本分类时存在的严重数据稀疏问题,提出了基于语义与最大匹配度的短文本分类方法.以《知网》为知识源,设计了基于义原距离、义原深度与区域密度的义原相似度计算方法,实现基于词类的词语相似度计算;提出了基于语义与最大匹配度的方法计算短文本相似度,应用KNN算法进行短文本分类.实验结果表明,该方法与基于语义、基于AD_NB等方法相比,正确率、召回率和F值均得到了明显的提高.

英文摘要:

To deal with the serious data sparseness problem exists in the traditional VSM method of carrying out short text classification,a short text classification method based on the semantics and maximum matching degree is put forward.The primary similarity calculation method is designed based on the distance,the depth and area density.Word similarity calculation is carried out according to its part of speech and HowNet is utilized as a source of knowledge.The short text similarity calculation based on the method of combining the semantics and maximum degree is proposed.KNN algorithm is applied to the short text classification.Experimental results show that the precision,recall and F-measure are significantly improved in contrast with those of the method based on the semantics,AD_ NB and so on.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616