语料资源与自然语言处理领域的各项研究息息相关,具有很大的应用价值。由于不同的研究机构对于语料标注的规则和标记的类型不尽相同,使得不同的语料库很难组合为一个更大的语料库来进行使用。针对该问题,该文从不同标注库及词类映射层面考虑,对其产生的词性歧义问题进行了研究,提出了一种将异源语料融合到一种体系下的方法,对词类信息进行映射和消歧,并进行了实验验证,融合后的词性信息准确率可达87%,实验结果表明该方法具有一定的有效性和可扩展性。
Corpus resources are closely related to Natural Language Processing. However, different research institutions have different rules and tags when constructing the copus, which prevents a unified big corpus. This paper investigates the different annotation scheme and presents a method for heterogeneous corpus integration. The experiments on part-of -speech mapping and and disambiguation indicate anaccuracy of 87 % after the integration, showing the validness of this method.