位置:成果数据库 > 期刊 > 期刊详情页
基于多目标粒子群算法的多传感器图像融合
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]轻工过程先进控制教育部重点实验室(江南大学),江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60574051)
中文摘要:

针对图像融合中参数优化的问题,提出了一种基于多目标粒子群优化算法的多传感器图像融合方法。首先采用非采样Contourlet变换(NSCT)对源图像进行多尺度、多方向分解;然后选取图像融合的客观评价指标为优化目标函数,采用多目标粒子群优化算法对低频系数的融合参数进行优化,带通方向子带系数采用取绝对值最大的融合规则:最后通过NSCT逆变换得到融合图像。分别对多聚焦图像融合和红外与可见光图像进行融合实验,并对融合图像进行主客观评价,实验结果表明,得到的融合图像具有较好的主观视觉效果和客观评价指标。

英文摘要:

A novel multi-sensor image fusion method based on multi-objective particle swarm optimization is proposed to solve the parameter optimization problem in the image fusion. Firstly, the Nonsubsampled Contourlet Transform (NSCT) is used to perform multi-scale and multi-directional decomposition on the source images. Then select the objective evaluation criteria as the optimal objective function. Multi-objective particle swarm optimization algorithm is used to optimize the fusion parameters of low-frequency coefficients. For band-pass directional sub-band coefficients selection, the rule of maximum absolute value is used. Finally, the fused image is obtained through inverse transform. The algorithm has been used to merge multi-focus images and infrared and visible light images. The experimental results indicate that the fused image obtained by the proposed method has a better subjective visual effect and objective evaluation criteria .

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003