运用Leray-Schauder非线性抉择定理研究了一类无穷区间上含有pLaplacian算子的n阶微分方程积分边值问题:﹛(φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0
In this paper,Leray-Schauder nonlinear alternative theorem is used to study the existence of positive solutions for nth-order integral boundary value problems with p-Laplacian operator on infinite interval﹛(φp(x(n-1)))′(t)+a(t)f(t,x(t),x′(t))=0,0t+∞,x(0)=α∫+∞ηg(τ)x(τ)dτ,x′(0)=x″(0)=…=xn-2(0)=0,t→+∞lim x(n-1)(t)=0whereη∈[0,+ ∞),α∈ [0,+ ∞)and f ∈C([0,+ ∞)×R×R,[0,+ ∞)).