位置:成果数据库 > 期刊 > 期刊详情页
基于加速鲁棒特征和多示例学习的目标跟踪算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山西大学计算机与信息技术学院,太原030006, [2]西安工程大学计算机科学学院,西安710048
  • 相关基金:国家自然科学基金资助项目(61201453,61201118);山西省基础研究计划项目(2014021022-2);山西省高等学校科技创新项目(2015108).
中文摘要:

针对照明变化、形状变化、外观变化和遮挡对目标跟踪的影响,提出一种基于加速鲁棒特征(SURF)和多示例学习(MIL)的目标跟踪算法。首先,提取目标及其周围图像的SURF特征;然后,将SURF描述子引入到MIL中作为正负包中的示例;其次,将提取到的所有SURF特征采用聚类算法实现聚类,建立视觉词汇表;再次,通过计算视觉字在多示例包的重要程度,建立“词-文档”矩阵,并且求出包的潜在语义特征通过潜在语义分析(LSA);最后,通过包的潜在语义特征训练支持向量机(SVM),使得MIL问题可以依照有监督学习问题进行解决,进而判断是否为感兴趣目标,最终实现视觉跟踪的目的。通过实验,明确了所提算法对于目标的尺度缩放以及短时局部遮挡的情况都有一定的鲁棒性。

英文摘要:

Concerning the influence of changing light, shape, appearance, as well as occlusion on target tracking, a target tracking algorithm based on Speeded Up Robust Feature (SURF) and Multi-Instance Learning (MIL) was proposed. Firstly, the SURF features of the target and its surrounding image were extracted. Secondly, SURF descriptor was introduced to the MIL as the examples in positive and negative bags. Thirdly, all the extracted SURF features were clustered, and a visual vocabulary was established. Fourthly, a "word document" matrix was establish by calculating the importance of the visual words in bag, and the latent semantic features of the bag was got by Latent Semantic Analysis (LSA). Finally, Support Vector Machine (SVM) was trained with the latent semantic features of the bag, so that MIL problem could be handled in accordance with the supervised learning problem. The experimental results show that the robustness and efficiency of the proposed algorithm under the variation of scale, gesture and appearance, as well as short-term partial occlusion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679