运用单调迭代方法讨论带有积分边界条件的非线性二阶常微分方程边值问题{u″(t)+f(t,u(t))=0,t∈(0,1),u(0)=∫01u(s)g(s)ds,u(1)=0正解的存在性.其中g∈L1[0,1]为非负函数,∫01(1-s)g(s)ds〈1,且f∈C([0,1]×R+,R+).
The existence of positive solutions for a nonlinear second-order ordinary differential equations BVP with integral boundary conditions {u″(t)+f(t,u(t))=0,t∈(0,1),u(0)=∫01u(s)g(s)ds,u(1)=0is given by using the monotone iterative method.Where g∈L1 is a nonnegeative function,∫01(1-s)g(s)ds1,and f∈C(×R+,R+).