研究非线性Neumann问题(p(t)u'+q(t)u=f(t,u),t∈(0,1),u'(0)=u'(1)=0正解的存在性,其中p,q∈C[0,1]满足p(t)〉0,0〈q(t)〈b*,t∈[0,1],b*为线性问题(p(t)')'+bu=0,u'(0)=0,u(1)=0的第一特征值.运用拓扑度理论及Rabinowitz全局分歧定理为上述问题建立了正解的存在性结果.
We are concerned with the existence of positive solutions of the nonlinear Neumann problem (p(t)u'+q(t)u=f(t,u),t∈(0,1),u'(0)=u'(1)=0 where p,q∈C[0,1] with p(t)〉0,0〈q(t)〈b*,t∈[0,1],b* is the first eigenvalue of the Robin problem (p(t)')'+bu=0,u'(0)=0,u(1)=0 By applying the topological degree theory and global bifurcation techniques, we establish the existence results of positive solutions for above problem.